Transient Convection Fluid Flow with Heat Flux in an Infinite Vertical Plate with Chemical Mass Transfer

نویسندگان

  • I. J. Uwanta
  • Murtala Sani
چکیده

The paper studied the transient convection fluid flow with heat flux in an infinite vertical plate with chemical mass transfer. The dimensionless governing equations were solved using the Laplace transform method to obtained the analytical expressions of velocity, temperature and concentration profiles of the fluid with expression of Skin friction, mass and heat transfer in terms of Shear stress, Nusselt number and Sherwood number respectively. The effects of various parameters associated with flow like Prandtl number Pr, Schmidt number Sc, modified Grashof number N, Radiation parameter F, chemical reaction parameter K, and time t are studied with the help of graphs and tables. It is observed that the velocity decreases with increasing Pr, N and t, and temperature increase with increasing t and N and decrease with increasing Pr, While the concentration increase with increasing Sc, K and t.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of thermal diffusion and chemical reaction on MHD transient free convection flow past a porous vertical plate with radiation, temperature gradient dependent heat source in slip flow regime

An analytical investigation is conducted to study the unsteady free convection heat and mass transfer flow through a non-homogeneous porous medium with variable permeability bounded by an infinite porous vertical plate in slip flow regime while taking into account the thermal radiation, chemical reaction, the Soret number, and temperature gradient dependent heat source. The flow is considered u...

متن کامل

Soret and chemical reaction effects on a three-dimensional MHD convective flow of dissipative fluid along an infinite vertical porous plate

An analytical study was performed to study effects of thermo-diffusion and chemical reactions on a three-dimensional MHD mixed convective flow of dissipative fluid along an infinite vertical porous plate with transverse sinusoidal suction velocity. The parabolic partial differential equations governing the fluid flow, heat transfer, and mass transfer were solved using perturbation technique and...

متن کامل

A Study on free convective heat and mass transfer flow through a highly porous medium with radiation, chemical reaction and Soret effects

The paper addresses the effects of Soret on unsteady free convection flow of a viscous incompressible fluid through a porous medium with high porosity bounded by a vertical infinite moving plate under the influence of thermal radiation, chemical reaction, and heat source. The fluid is considered to be gray, absorbing, and emitting but non-scattering medium, and Rosseland approximation is consid...

متن کامل

Analytical and numerical investigation of heat and mass transfer effects on magnetohydrodynamic natural convective flow past a vertical porous plate

The aim of this investigation is to study the effect of hall current on an unsteady natural convective flow of a viscous, incompressible, electrically conducting optically thick radiating fluid past a vertical porous plate in the presence of a uniform transverse magnetic field. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. Analytical a...

متن کامل

Chemical reaction and radiation effects on MHD free convection flow through a porous medium bounded by a vertical surface with constant heat and mass flux

In the present paper, an analysis was carried out to investigate effects of radiation on a free convection flow bounded by a vertical surface embedded in a porous medium with constant suction velocity. It was under the influence of uniform magnetic field in the presence of a homogenous chemical reaction and viscous dissipation with constant heat and mass flux. The non-dimensional governing equa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012